--- title: "PRE" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{PRE} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(Keng) library(effectsize) library(car) data("depress") ``` PRE is called partial R-squared in regression, and partial Eta-squared in ANOVA. This vignette will examine their equivalence using the internal data `depress`. `depress` collected `depression`, `gender`, and `class` at Time 1. Traditionally, we examine the effect of `gender` and `class` using anova. We firstly let R know `gender` and `class` are factors (i.e., categorical variables). Then we conduct anova using `car::Anova()` and compute partial Eta-squared using `effectsize::eta_squared()`. ```{r} # factor gender and class depress_factor <- depress depress_factor$class <- factor(depress_factor$class, labels = c(3,5,9,12)) depress_factor$gender <- factor(depress_factor$gender, labels = c(0,1)) anova.fit <- lm(dm1 ~ gender + class, depress_factor) Anova(anova.fit, type = 3) cat("\n\n") print(eta_squared(Anova(anova.fit, type = 3), partial = TRUE), digits = 6) ``` Then we conduct regression analysis and compute *PRE*. For `class` with four levels: 3, 5, 9, and 12, we dummy-code it using `ifelse()` with the class12 as the reference group. ```{r} # class3 indicates whether the class is class3 depress$class3 <- ifelse(depress$class == 3, 1, 0) # class5 indicates whether the class is class5 depress$class5 <- ifelse(depress$class == 5, 1, 0) # class9 indicates whether the class is class9 depress$class9 <- ifelse(depress$class == 9, 1, 0) ``` We compute the *PRE* of `gender` though comparing Model A with `gender` against Model C without `gender`. ```{r} fitC <- lm(dm1 ~ class3 + class5 + class9, depress) fitA <- lm(dm1 ~ class3 + class5 + class9 + gender, depress) print(compare_lm(fitC, fitA), digits = 3) ``` Compare gender's *PRE* and partial Eta-squared. They should be equal. We compute the *PRE* of `class`. Note that in regression, the *PRE* of `class` is the *PRE* of all `class`'s dummy codes: `class3`, `class5`, and `class9`. ```{r} fitC <- lm(dm1 ~ gender, depress) fitA <- lm(dm1 ~ class3 + class5 + class9 + gender, depress) print(compare_lm(fitC, fitA), digits = 3) ``` Compare class's *PRE* and partial Eta-squared. They should be equal. We compute the *PRE* of the full model(Model A). The *PRE* (partial R-squared or partial Eta-squared) of the full model is commonly known as the R-squared or Eta-squared of the full model. ```{r} fitC <- lm(dm1 ~ 1, depress) fitA <- lm(dm1 ~ class3 + class5 + class9 + gender, depress) print(compare_lm(fitC, fitA), digits = 3) ``` As shown, the *PRE* of Model A against Model C is equal to Model A's R_squared. Taken the loss of precision into consideration, Model C's R_squared is zero.